1160 Chemistry Letters 2002

Novel Activity of TiO₂ for Catalytic Conversion of CO and H₂O to Alcohols in the Presence of K₂CO₃

Dechun Ji, Longya Xu, Shenglin Liu, and Qingxia Wang* Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, 457 Zhongshan Road, P. O. Box 110, Dalian, 116023, P. R. China

(Received August 6, 2002; CL-020658)

In the presence of K_2CO_3 , TiO_2 shows good catalytic activity and stability for the alcohols synthesis from CO and H_2O . CO conversion of 7.6% and the STY of MeOH (about 24 mg g⁻¹ h⁻¹) and EtOH (about 8 mg g⁻¹ h⁻¹) are obtained under reaction conditions of T = 573 K, P = 0.5 MPa, CO flow rate of 30 ml min⁻¹ and $CO/H_2O = 3/2$ during the period of 12 h to 44 h time-on-stream.

Methanol is one of the important feedstocks in chemical industries. For the last two decades most of the research work has concentrated on the production of alcohols from CO and H_2 and a large number of findings have been reported in the literature. ^{1–4} In those processes a large amount of H_2 ($H_2/CO = 2$) is required.

An alternative process is that CO reacts with $\rm H_2O$ to produce alcohols. It is of particular advantage that no hydrogen is required and CO can be provided as a by-product from the steel industry, the partial oxidation of coal and typical coal gasification processes. In 1984, Klinger et al.⁵ first reported the reaction:

$$3CO + 2H_2O = CH_3OH + 2CO_2$$
 (1)

They supposed that lead oxide combined with an alkali metal formate catalyzed the reaction. However, the catalyst deactivated slowly with reaction progressing because of the reduction of PbO in the presence of CO. How to keep the catalyst active center not to be reduced in the presence of CO is the key point for the reaction. In our experiment, it is found that TiO₂ possesses such feature in the presence of CO for the reaction and it shows good catalytic performance. Here, we report the interesting results.

 TiO_2 was prepared by decomposition of titanium hydroxide. The details of this process were as follows: $TiCl_4$ was dissolved in distilled water, and an aqueous ammonia was added until the PH value attained 4. The resultant precipitate was washed until no Cl^- ions were detected. Subsequently it was treated with n-butanol azeotropic distillation method to obtain a gel powder, which was further calcined at 773 K in air for 4 h. HCOOK, K_2CO_3 , ZnO, Al_2O_3 and PbO were purchased from Beijing Chemical Reagent Plant of China, MgO and ZrO_2 were obtained by decomposition of magnesium carbonate and zirconium hydroxide respectively, in an N_2 stream at 723 K for 2 h.

The reaction of CO and H_2O was carried out in a 60 ml stainless steel reactor. The gas reactants (carbon monoxide mixed with N_2) were saturated with water by bubbling the gas into a reservoir, which was kept at a suitable temperature to obtain the desired water concentration in the reactant flow. The flow rate of CO was 30 ml min⁻¹. A mixture of 3.0 g alkali carbonate (K_2CO_3 , Na_2CO_3 or Li_2CO_3) and 2.0 g of catalyst was suspended in 30 ml of solvent. Catalytic decomposition of HCOOK was carried out in the same reactor when the N_2 was supplied instead of CO under

the same conditions. An internal standard method was employed to calculate the conversion of CO. Then the feed and effluent gases were analyzed with a thermal conductivity detector using carbon molecular sieve column. The liquid products were collected in a trap cooled by a mixture of ice and water before they were analyzed with a gas chromatograph (Shimadzu GC-8A) equipped with a flame ionization detector using Porapak Q column.

Klinger et al.⁵ reported that the reaction mechanism was as follows:

$$CO_3^{2-} + 2CO + H_2O \rightarrow 2HCO_2^{-} + CO_2$$
 (2)

$$4HCO_2^- \xrightarrow{catalyst} CH_3OH + CO + 2CO_3^{2-}$$
 (3)

 HCO_2^- is an important intermediate. In our experiment, it was found that only under catalyst TiO_2 and alkali carbonate, could alcohols be detected. In other words, without the catalyst or CO_3^{2-} no product could be detected. These phenomena clearly suggest that, for CO reacting with H_2O and CO_3^{2-} to produce alcohols, first, the intermediate HCO_2^- should be formed under proper conditions, at the same time, the catalyst employed should catalyze the intermediate HCO_2^- to produce alcohols. K_2CO_3 , Na_2CO_3 and Li_2CO_3 all may be converted to the intermediate HCO^{2-} under suitable reaction conditions as eq. 2. As shown in Table 1, for the same catalyst TiO_2 , the reaction performance of alkali carbonate increases with their increasing solubility $(K_2CO_3 > Na_2CO_3 > Li_2CO_3)$.

Table 1. Relationship between solubility and reaction performance of alkali carbonate over TiO₂

		Li ₂ CO ₃	Na ₂ CO ₃	K ₂ CO ₃
Solubility (wt%) ⁷		1.52	6.54	51.35
Conversion of CO (%)		3.2	4.1	8.9
	CO_2	52.1	63.5	111.9
Product distribution	НСНО	tr.	0.88	3.12
$(\text{mg g-cat}^{-1} \text{h}^{-1})$	MeOH	2.51	4.49	23.95
	EtOH	0.06	1.53	8.29

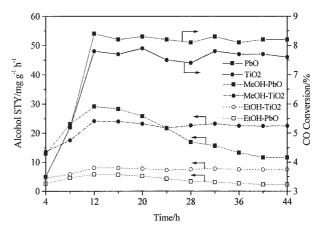
Reaction conditions: 573 K; CO flow rate of 30 ml min $^{-1}$; CO/ $H_2O = 3/2$; Solvent-tetraethylenepentamine.

TiO₂, PbO, Al₂O₃ and other oxides were employed to catalyze decomposition of intermediate HCOOK to alcohols. The results are summarized in Table 2. Al₂O₃ is known to have both acidic and basic properties, but does not show any catalytic activity. ZnO, MgO, and ZrO₂ yield more hydrogen and CO with trace amount of alcohols product, suggesting they make the deep reaction which is shown in eq. 4. As reported in many literatures, ZnO and CuO⁶ are good catalysts for CO reforming reaction.

Chemistry Letters 2002 1161

Table 2. Catalytic decomposition of HCOOK over various oxides

Catalyst -	Products (mmol g ⁻¹)						
	MeOH	НСНО	EtOH	H_2	CO	CO_2	
TiO ₂	0.99	0.13	0.28	1.34	1.12	0.87	
PbO	1.19	0.15	0.11	1.08	1.25	1.33	
SnO_2	0.39	0.03	_	0.09	1.12	0.33	
ZrO_2	0.08	0.01	_	1.90	1.39	1.18	
MgO	0.03	0.02	_	2.02	3.11	1.17	
Al_2O_3	0.01	_	_	0.51	0.14	0.27	
ZnO	0.04			1.24	1.88	0.68	


Reaction conditions: 573 K; 15 g HCOOK and 4 g catalyst; dilute gas N_2 ; TOS = 5 h.

 TiO_2 shows good catalytic activity (1.27 mmol/g), similar with that of PbO (1.30 mmol/g).

$$2HCO_2^- \to H_2 + CO + 2CO_3^{2-}$$
 (4)

Subsequently, the catalytic conversion of CO, H_2O and K_2CO_3 to alcohols was examined over TiO_2 in various solvents, such as triethylamine, liquid paraffin and liquid polyamines. Investigation of the effects of the solvents shows that tetraethylenepentamine is an effective solvent. Therefore, another determinant factor affecting the catalytic activity is possibly the alkalescence of the solvent.

As shown in Figure 1, under reaction conditions of $T=573~\rm K$, $P=0.5~\rm MPa$, CO flow rate of $30~\rm ml~min^{-1}$ and CO/ $\rm H_2O=3/2$, the stabilities of the PbO and TiO₂ catalysts for the CO reacting with H₂O and K₂CO₃ to produce alcohols are compared. At the first 12 h of time-on-stream (TOS), the two catalysts show similar catalytic activity. The STY of MeOH and EtOH increase from about 20 to about 35 mg g⁻¹ h⁻¹, then reach a plateau. From 24 h to 44 h of time-on-stream, CO conversions of the two samples show no significant change besides the value of PbO is somewhat higher than that of TiO₂. It should be emphasized that TiO₂ preserves the stable catalytic activity (STY of MeOH and EtOH are kept about 24 and 8 mg g⁻¹ h⁻¹, respectively), while the yield of MeOH over PbO decreases obviously from 24 mg g⁻¹ h⁻¹ (24 h) to only $10~\rm mg~g^{-1}~h^{-1}$ (44 h), accompanied with the increase product of CO₂. It implies that the reaction

Figure 1. Changes in average production of alcohols as a function of time over TiO_2 and PbO. Reaction conditions: 573 K; 0.5 MPa; CO flow rate of 30 ml min^{-1} ; CO/H₂O = 3/2; Solvent: tetraethylenepentamine.

active center may be TiO_2 or PbO for the two catalysts employed. In the presence of CO, TiO_2 remains to be oxidic state while PbO is readily to be reduced to metallic state.⁵

An attempt to conducting further study about the mechanism for the reaction over TiO_2 catalyst is in progress in our laboratory, and the result will be reported later.

References

- B. J. Wood, W. E. Isakson, and H. Wise, *Ind. Eng. Chem.*, *Prod. Res. Dev.*, **19**, 197 (1980).
- 2 G. B. Hoffund, W. S. Epling, and D. M. Minahan, *Catal. Lett.*, 62, 169 (1999).
- 3 H. Kusama, K. Okabe, and H. Arakawa, *Appl. Catal.*, *A*, **207**, 85 (2001).
- 4 K. Tomonaga, Y. Sasaki, M. Saito, K. Hagihara, and T. Watanabe, *J. Mol. Catal.*, **89**, 51 (1994).
- 5 R. J. Klinger and J. W. Rathke, J. Am. Chem. Soc., 106, 7650 (1984).
- 6 H. Wittke, M. Haftendorn, H. Meye, K. Weber, and B. Poppe, Ger. Offen. DE 4116628 (1992).
- 7 H. Stephen and T. Stephen, "Solubilities of Inorganic Compounds," Program on Pr, Oxford (1963), Vol. 1.